Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Bioorg Chem ; 147: 107381, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38669781

ABSTRACT

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.

2.
Eur J Pharmacol ; 971: 176528, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556118

ABSTRACT

Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 µM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.


Subject(s)
Cyclohexylamines , Ferroptosis , Hyperuricemia , Kidney Diseases , Phenylenediamines , Mice , Animals , Uric Acid , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Kidney Diseases/drug therapy , Fibrosis , Iron
3.
Eur J Med Chem ; 269: 116327, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38547733

ABSTRACT

We report the design and synthesis of a series of proline-derived quinoline formamide compounds as human urate transporter 1 (URAT1) inhibitors via a ligand-based pharmacophore approach. Structure-activity relationship studies reveal that the replacement of the carboxyl group on the polar fragment with trifluoromethanesulfonamide and substituent modification at the 6-position of the quinoline ring greatly improve URAT1 inhibitory activity compared with lesinurad. Compounds 21c, 21e, 24b, 24c, and 23a exhibit potent activities against URAT1 with IC50 values ranging from 0.052 to 0.56 µM. Furthermore, compound 23a displays improved selectivity towards organic anion transporter 1 (OAT1), good microsomal stability, low potential for genotoxicity and no inhibition of the hERG K+ channel. Compounds 21c and 23a, which have superior pharmacokinetic properties, also demonstrate significant uric acid-lowering activities in a mouse model of hyperuricemia. Notably, 21c also exhibits moderate anti-inflammatory activity related to the gout inflammatory pathway. Compounds 21c and 23a with superior druggability are potential candidates for the treatment of hyperuricemia and gout.


Subject(s)
Gout , Hyperuricemia , Organic Anion Transporters , Quinolines , Mice , Animals , Humans , Uric Acid/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Quinolines/pharmacology
4.
J Agric Food Chem ; 72(12): 6565-6574, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498316

ABSTRACT

Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 µM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.


Subject(s)
Alkaloids , Benzodioxoles , Hyperuricemia , Piperidines , Polyunsaturated Alkamides , Humans , Mice , Animals , Hyperuricemia/drug therapy , Uric Acid/metabolism , Kidney/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Membrane Transport Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
5.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38482820

ABSTRACT

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Subject(s)
Gout , Hyperuricemia , Organic Anion Transporters , Thioglycolates , Triazoles , Humans , Uric Acid/therapeutic use , Gout/drug therapy , Hyperuricemia/drug therapy , Uricosuric Agents/therapeutic use , Pyrimidines/toxicity , Pyrimidines/therapeutic use , Glucose Transport Proteins, Facilitative , Organic Cation Transport Proteins
6.
Exp Biol Med (Maywood) ; 248(20): 1864-1876, 2023 10.
Article in English | MEDLINE | ID: mdl-38031247

ABSTRACT

Excessive acetaminophen (APAP) application is a major cause of drug-induced liver injury (DILI). Febuxostat (Feb), a drug for reducing uric acid (UA) levels, was demonstrated to relieve hepatic inflammation and reverse organ functions. However, the effect of Feb on APAP-induced DILI and its mechanisms have not been fully explored. In this study, Feb (10 mg/kg) was given to mice by gavage 1 h after APAP (300 mg/kg, i.g.) induction. Serum and liver samples were collected 12 or 3 h after APAP challenge. Feb treatment was found to remarkably improve APAP-induced DILI, as evidenced by reduced serum ALT, AST and UA levels, pathomorphology, inflammatory, and oxidative responses. Consistently, treatment with Feb also reduced the cell injury induced by APAP in LO2 cells. Mechanistically, Feb induced GPX4 expression, activated the Keap1/Nrf2 pathway, and inhibited the TLR4/NF-κB p65 pathway. Feb also inhibited glutathione (GSH) depletion and Jun N-terminal kinase (JNK) activation in the early injury phase. Notably, pretreatment with Feb for 3 days also revealed preventive effects against APAP-induced DILI in mice. Overall, our data revealed a potential health impact of Feb on APAP-mediated DILI in vivo and in vitro, suggesting that Feb might be a potential candidate for treating DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Oxidative Stress , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Febuxostat/pharmacology , Febuxostat/metabolism , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/metabolism , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism
7.
Bioorg Chem ; 133: 106405, 2023 04.
Article in English | MEDLINE | ID: mdl-36753966

ABSTRACT

Previously we discovered a novel natural scaffold compound, isobavachin (4', 7-dihydroxy-8-prenylflavanone), as a potent URAT1 inhibitor by shape and structure based on a virtue screening approach. In this study, further urate-lowering mechanism, pharmacokinetics and toxicities of isobavachin were conducted. Isobavachin inhibited URAT1 with an IC50 value of 0.24 ± 0.06 µM, and residues S35, F365, I481 and R477 of URAT1 contributed to high affinity for isobavachin. Isobavachin also inhibited glucose transporter 9 (GLUT9), another pivotal urate reabsorption transporter, with an IC50 value of 1.12 ± 0.26 µM. Molecular docking and MMGBSA results indicated that isobavachin might compete residues R171, L75 and N333 with uric acid, which leads to inhibition of uric acid transport of GLUT9. Isobavachin weakly inhibited urate secretion transporters OAT1 with an IC50 value of 4.38 ± 1.27 µM, OAT3 with an IC50 of 3.64 ± 0.62 µM, and ABCG2 with an IC50 of 10.45 ± 2.17 µM. Isobavachin also inhibited xanthine oxidase (XOD) activity in vitro with an IC50 value of 14.43 ± 3.56 µM, and inhibited the hepatic XOD activities at 5-20 mg/kg in vivo. Docking and MMGBSA analysis indicated that isobavachin might bind to the Mo-Pt catalyze center of XOD, which leads to inhibition of uric acid production. In vivo, isobavachin exhibited powerful urate-lowering and uricosuric effects at 5-20 mg/kg compared with the positive drugs morin (20 mg/kg) and RDEA3170 (10 mg/kg). Safety assessments revealed that isobavachin was safe and had no obvious toxicities. Isobavachin has little cell toxicity in HK2 cells as indicated by the MTT assay. In vivo, after treatment with 50 mg/kg isobavachin for 14 days, isobavachin had little renal toxicity, as revealed by serum CR/BUN levels, and no hepatotoxicity as revealed by ALT/AST levels. Further HE examination also suggests that isobavachin has no obvious kidney/liver damage. A pharmacokinetic study in SD rats indicated isobavachin had lower bioavailability (12.84 ± 5.13 %) but long half-time (7.04 ± 2.68 h) to maintain a continuous plasma concentration. Collectively, these results indicate that isobavachin deserves further investigation as a candidate anti-hyperuricemic drug with a novel mechanism of action: selective urate reabsorption inhibitor (URAT1/GLUT9) with a moderate inhibitory effect on XOD.


Subject(s)
Flavones , Uric Acid , Xanthine Oxidase , Animals , Rats , Kidney/drug effects , Kidney/metabolism , Molecular Docking Simulation , Rats, Sprague-Dawley , Uric Acid/metabolism , Xanthine Oxidase/antagonists & inhibitors , Flavones/chemistry , Flavones/pharmacology
8.
Foods ; 11(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36360095

ABSTRACT

Hyperuricemia (HUA), characterized by abnormal serum uric acid (UA) levels, is recognized as an important risk factor for hyperuricemic nephropathy (HN), which is strongly linked to gut microbiota. This study investigated the protective effects and regulatory mechanisms of insoluble fiber from barley leaves (BL) against HN, induced by adenine (Ad) and potassium oxonate (PO). The results showed that BL dramatically reduced the levels of serum UA and creatinine (CR) and alleviated renal injury and fibrosis. Moreover, BL modulated oxidative stress and downregulated the expression of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys of mice with HN. In addition, the 16S rRNA sequence data showed that BL also increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroides, Alloprevotella, and Eisenbergiella. Besides, BL treatment also increased SCFAs levels. Of interest, the application of SCFAs in hyperuricemic mice effectively reduced their serum UA. Furthermore, SCFAs dose-dependently inhibited URAT1 and GLUT9 in vitro and potently interacted with URAT1 and GLUT9 in the docking analysis. When taken together, our results indicate that BL and its metabolite SCFAs may be potential candidates for relieving HUA or HN.

9.
ACS Omega ; 7(38): 34621-34631, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188325

ABSTRACT

Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for hyperuricemia. Due to a lack of crystal structure information, the atomic structure of URAT1 is not clearly understood. In this study, a multiple sequence alignment was performed, and K393, a positively charged residue in transmembrane domain (TMD) 8, was observed to be highly conserved in organic anion transporters (OATs). K393 was substituted with a positively, negatively, and neutrally charged amino acid via site-directed mutagenesis and then used to transfect HEK293 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analyses indicated that mutants of K393 showed mRNA and protein expression levels similar to those in the WT group. The nonpositively charged mutants K393A, K393D, and K393E eliminated 70-80% of 14C-uric acid transport capacity, while the K393H mutant showed slight and the K393R mutant showed no reduced transport capacity compared with the WT group. Binding assays indicated that K393A, K393D, and K393E conferred lowered uric acid binding affinity. As indicated by the K m and V max values obtained from saturation kinetic experiments, K393A, K393D, and K393E showed increased K m values, but K393R and K393H showed K m values similar to those in the WT group. K393 also contributed to a high affinity for benzbromarone (BM) interaction. The inhibitory effects of BM were partly abolished in K393 mutants, with increased IC50 values compared with the WT group. BM also exhibited weaker inhibitory effects on 14C-uric acid binding in K393R and K393H mutants. In an outward homology model of URAT1, K393 was located in the inner part of the transport tunnel, and further molecular docking analysis indicated that uric acid and BM showed possible hydrogen bonds with K393. Mutants K393R and K393H showed possible interactions with uric acid, and positive charges confer high affinity for uric acid as revealed by their surface electrostatic potential. In conclusion, our data provide evidence that K393 is an important residue for the recognition of uric acid or inhibitors by URAT1.

10.
Eur J Med Chem ; 242: 114682, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36001935

ABSTRACT

Benzbromarone (BM) is a potent URAT1 inhibitor approved for the treatment of gout. However, the low URAT1-selectivity and hepatotoxcity limit its clinical use. To solve these problems, we rationally designed and synthesized a series of BM derivatives by chemotype hybridization and bioisosteric replacement. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 5.83 µM to 0.80 µM. Among them, JNS4 exhibited the highest URAT1 inhibitory activity with an IC50 of 0.80 µM, comparable to that of BM (IC50 = 0.53 µM). Molecular dynamic simulations showed that JNS4 formed π-cation interaction with R477, the same as BM. Different from BM, JNS4 bound to W357 and H245 via π-π interactions and formed a hydrogen bond with S35, which might contribute to the high URAT1 binding affinity of JNS4. JNS4 hardly inhibited GLUT9 (IC50 > 20 µM), another urate reabsorption transporter. In addition, JNS4 showed little inhibitory effects against OAT1 and ABCG2 with IC50 of 4.04 µM and 10.16 µM, respectively. Importantly, JNS4 displayed higher in vivo urate-lowering effects at doses of 1-4 mg/kg in a mouse model of hyperuricemia, as compared to BM and lesinurad. Furthermore, JNS4 possessed favorable pharmacokinetic properties with an oral bioavailability of 55.28%, significantly higher than that of BM (36.11%). Moreover, JNS4 demonstrated benign toxicity profiles (no cytotoxicities against HepG2 and HK2 cells; no hepatic and renal toxicities observed in vivo). Collectively, these results suggest that JNS4 represents a novel, safe and selective URAT1 inhibitor with excellent druggabilities and is worthy of further investigation as an anti-hyperuricemic agent.


Subject(s)
Hyperuricemia , Organic Anion Transporters , Animals , Benzbromarone/pharmacology , Benzbromarone/therapeutic use , Hyperuricemia/drug therapy , Mice , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/therapeutic use , Uric Acid/metabolism , Uricosuric Agents/pharmacokinetics , Uricosuric Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...